Seventy years ago humans unleashed a killer virus on rabbits Heres how

first_img Seventy years ago, humans unleashed a killer virus on rabbits. Here’s how they beat it Trustees of the Natural History Museum Researchers have written another chapter in the textbook case of an arms race between a host and its pathogen. The main characters in this 70-year seesaw drama are the voracious European rabbit (Oryctolagus cuniculus) and a virus deliberately released in France and Australia to kill off the rabbits and protect fields and pastures. Working with museum specimens collected decades ago, a team has discovered that rabbits on two continents evolved the same genetic changes to beat back the virus—before the virus itself changed and regained the upper hand.The find is a striking example of how evolution sometimes repeats itself, and it may hold clues to how human immune systems respond—or don’t—to pathogens. The rabbit work, published online today in Science, “provides key new information on one of the greatest stories in evolution,” says Edward Holmes, an evolutionary biologist at the University of Sydney in Australia who studies the biocontrol virus.In Australia, a few dozen European rabbits introduced in the mid-1800s for hunters did what the animals famously do. They multiplied until hundreds of millions were chowing down on crops. So, in 1950, after a smallpoxlike virus found in South American rabbits turned out to kill the European relative, Australian authorities released the virus into the wild, cutting the rabbit population by 99%. A few years later, the virus, called myxoma, was released in France and eventually spread to the United Kingdom. By Elizabeth PennisiFeb. 14, 2019 , 2:00 PM ROB SUISTED/NATURE’S PIC IMAGES The bones of a European rabbit collected by Charles Darwin were among the museum specimens whose DNA was analyzed in the new study. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Country Click to view the privacy policy. Required fields are indicated by an asterisk (*) Email The result was “an opportunity to trace host-pathogen arms races right in front of our eyes,” says Jia Liu, a biologist at the University of Arkansas for Medical Sciences in Little Rock. Within a decade, rabbit numbers were on the rise again as some evolved resistance to this deadly infection and the virus itself became less deadly.To understand the rabbit’s adaptations, Joel Alves, now an evolutionary biologist at the University of Oxford in the United Kingdom, evolutionary geneticist Francis Jiggins at the University of Cambridge in the United Kingdom, and colleagues tracked down specimens of U.K., Australian, and French O. cuniculus collected by museums prior to the virus’s introduction. They sequenced all the genes and other DNA that might influence the body’s immune defenses and compared the results with sequences from modern rabbits living in the same places. The comparisons revealed changes in many genes, usually a shift in the frequency of particular versions, or alleles, of a gene. Strikingly, half of the changes were shared by the rabbits in all three countries—evidence of parallel evolution. The European rabbit devastated crops and pastures in Australia and elsewhere. One allele shift affected the rabbits’ interferon, a protein released by immune cells that sounds the alarm about a viral attack and helps trigger an immune response. Compared with preinfection rabbits, modern rabbits make an interferon that is better at responding to the biocontrol virus, the researchers found when they added different versions of the protein to rabbit cell lines.The virus has not stood still. In 2017, Holmes and his colleagues reported that in the 1970s the virus developed a greater ability to suppress the rabbit’s immune responses. That change, as well as the natural emergence of another rabbit-killing virus, has caused populations to decline again. But in contrast to the parallel evolution in rabbits, myxoma viruses in the various locations took different genetic paths to regaining potency.Andrew Read, an evolutionary microbiologist at Pennsylvania State University in State College, suggests the viral counterattack “is a cautionary tale” for researchers aiming to take charge of the evolutionary arms race by introducing biocontrol agents or making crops or livestock more resistant to disease. “One should be careful about evolution and counterevolution,” he says. “The rabbit hasn’t won.”last_img